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APPROXIMATE EXPANSION FOR FUNCTION
THEORETIC REPRESENTATION OF SOLUTIONS

OF THE HELMHOLTZ EQUATION
MARK D. DUSTON

ROBERT P. GILBERT
DAVID H. WOOD

BY APPLYING SEPARATION OF VARIABLES TO THE HELMHOLTZ
EQUATION, WE FIND THAT WE WANT TO TRANSMUTE SOLUTIONS OF

d 2dzy p + k2o= o

INTO SOLUTIONS OF
dzdz2 q, + k2[1 -+ cs(z)]1 = 41'.

VUGRAPH 1

We are primarily interested in a problem from underwater acoustics. By a
"function theoretic method" we mean a transmutation of the Helmholtz equation
with constant coefficients into solutions of the Helmholtz equation with vari-
able coefficients. The Helmholtz equation is a partial differential equation
governing the propagation of sound. We start with a model of the ocean using
the depth dependent Helmholtz equation, and apply separation of variables. The
depth-dependent part of the separated Helmholtz equation with constant coeffi-
cients satisfies the ordinary differential equation

d2
d + k2 0 A

dz

This represents an ocean with uniform sound speed. The depth dependent part
of the Helmholtz equation with variable coefficients satisfies the ordinary

differential equation:

d2 k

S + k [ + S(z)] -

dz

which represents an ocean where the sound speed is a function of the depth.
Here the term es(z) is the perturbation of the index of refraction of the
variable coefficient Helmholtz equation. The small parameter c is a measure
of the size of the perturbation. 1
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THE TRANSMUTATION OPERATION COMPUTES

0(z) = (p(z) + , K(z,s) p(s) ds

IN TERMS OF THE TRANSMUTATION KERNEL K(z,s)
WHICH MUST SATISFY
a2 K _ 2 K 2a 2K _ 2 ~+ k2cs(z) K = 0.
az2  as2

VUGRAPH 2

We are looking for a transmutation of the form

O(z) - O(z) + b K(z,s)o(s) ds
zb

where the kernel function K(z,s) must be determined. We substitute the trans-
mutation into the ordinary differential equation for the separate- variable
coefficient Helmholtz equation, and this yields a partial differential
equation for the kernel function K(z,s)

a2K -a2K + k2es(z)K - 0

az
2  8s

2

Although this may seem to be stepping backwards niurter going through the
trouble of reducing the Helmholtz equation to an ordinary differential
equation problem we will demonstrate a method of approximating the kernel b:
iterative integrals.

2
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FOR EXAMPLE, SUPPOSE Z
azz

SINCE

= (p~) + I K(z,s) qp(s) ds,I

WE ASK Z
a p(Zb) 0
azbh

aI
as K(Z,Zb) =0,

AND Zb $

2 a- K(zz) + k 2 Es(Z) =0.az

VUGRAPH 3

We now invoke our boundary conditions for the Helmholtz equation with
variable coefficients. We ask that the pressure goes to zero at the surface
of the ocean (a pressure release condition), which is 0(0)-0, and that the
boundary beneath the ocean and its bottom at the depth zb be rigid, which is
the condition 0'(Zb)-O. We impose a similar bottom boundary condition on the
solutions of the Helmholtz equation with constant coefficients. Combining this
with the given transmutation we obtain two additional constraints on the
kernel function K(z,s),

a K(zzb) - 0 and 2 L K(z,z) + k 2es(z) _ 0

These two conditions and the partial differential equation for K(z,s) are
sufficient to uniquely determine the kernel function. A1stribut ion/

Avallability CodesDs a ail -fad/or

Dist Special

.Pt
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J ONE METHOD OF SOLVING FOR THE KERNEL, K(z,s):

LET M( ,q) = K(z,s) WHERE 2 = z + s - 2 zb,2 2 = z - s.

THEN

2Mf + k2 cs(C+)7+zb) M=0.

EXPAND M( ,q) AS
00

M(f,)- 7 k2p Mcp l (f,q), WHERE
p=l1

=f Es(a + zb) da - 0 ES(A + Zb) dfi

AND
+ 1 - M' p' (a,) s(a + 83 + Zb) dad/p.M'P + #)- 0o

VUGRAPH 4

One method of solving for the kernel function K(z,s)- M(,?7) is to
transform into characteristic coordinates given by

2  = z + s - 2 zb and 2 - z -s.

We then get a partial differential equation for M( ,q) which is

2 M +k2es( + n + Zb)M - 0.

2We next do a Born expansion of M in the parameter k2 . This yields a system of
integrals where the first coefficient of the expansion is given by

2 M(1) - -J s(a+zb) da - es(P+zb) do
0 0

and succesive coefficients in the expansion are given by

+ f J M(P)(aP) (s(a+0+zb) dcr do

0 0
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K(z,s) kX k2P K'p)(Z,S)
P=

1

z + s - 2 4b z S

2K('(z,s) = 0 2 Es(a + Zb) da- i02 S(.8 + Zb) d/3

a AND
Z -S z + s-2Zb

KP+ 1)(zs) 0 2 0 2 KP(a, /3Es(a + /3+ Zb) da d/3.

VUGRAPH 5

Inverting coordinates from ( ,q7) back into (z,s) we obtain the expansii.

of the kernel function K(z,s). The first term of the the expansion is

2K(1) (Zs) (z+s 2 zb) /2  zs/
20 K zs)-s(a+zb ) cia - E sC+zb ) do

and the succesive terms of the expansion are given by

(P~l) -r(z-s )/2 ~.(z+s- 2 zb )/2 ()K (Z's) - 0J J K ~(a,16) es(cz++zb ) cia do

We have now obtained explicit formulas for the power series expansion of the-
kernel K(z,s) in the parameter e.
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EXPAND IN SERIES IN E

O(Z) = 0(0)(Z) + _1)(Z) + E20(2)(Z) + .

O()= ti0 (Z) + _O'(')(Z) + E20k( 2)(Z) + .

A = (O) EA"1+) 2' (2)+

VUGRAPH 6

We also expand in power series in the parameter c: 1) the solution of the
depth dependent part of the Helmholtz equation with constant coefficients,
2) the solution of the depth dependent part of the separated Helmholtz
equation with variable coefficients and 3) the constant X.

6
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USE THE BOUNDARY CONDITION

0 = 0o(0) = Ao(O) + K(O,s) p(s) ds.

DEFINE O(z) = p(z) - p(O).

NOTICE THAT
a

8(0) = 0 AND a O(Zb) = 0.az

ITS EXPANSION IS

O(Z) = 0'0 )(z) + EO1 )(Z) + E2 0(21(Z) ± " "

VUGRAPH 7

By examiningthe surface boundary condition we see that in general the

transmutation does not allow the surface boundary condition for the separated

Helmholtz equation with constant coefficients to be identical to that for the

problem with variable coefficients i.e. 0(0)?,0. Therefore we define a new

function

O(z)= O(z) - (0)

and see that this function does satisfy the same boundary conditions as O(z).

We then expand this new function in power series in e.
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ORDER Eo:

1(o)", + (k 2 - Ao(0 ) 1(0o _ 0

ORDER E:

9(1)p" + (k2 - A(0)) 0() - )'A °() 10 (A (0 - k 2) (1) (0)

ORDER E2:

,(2)t + (k2 + ,(O)) (2) _ A 9M,1 , _ ,(2)o(O) = ( k2)p, 2 (0) + V 1,' p ' (O)

NC2" 3A8 -WC 38C

VUGRAPH 8

Substituting 9(z) into the ordinary differential equation for the depth
dependent part of the Helmholtz equation with constant coefficients and
isolating the terms with corresponding powers in e we obtain a sequence of
ordinary differential equations each with the same boundary conditions as the
original problem.

For the 0tn order term it is well known that this homogeneous ordinary
differential equation has a set of solu tons (normalized sine functions) for
(0 ) and corresponding eigenvalues for AN 

)

We then take inner products of, 9(1 with the 0th order equation ani
0(0) with the first order equation and subtract to get the expression

X(1I)Izb 0 (0)(s ) ds - ( I - J zb ()'(0)-k2) (1)(0)0(0)(s) ds

which yields X(i) if we know the value of the constant 0(i)(0).

8
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THE CORRECTIONS TO FIRST ORDER IN E ARE
DEFINED IN TERMS OF

(~)(0) zb K= f (1) 0(o)(S ) ds

AND
E2 /0.z +S- Zb

K(f)(z,s) = - - 2 (- + Zb) - 1] d- +

J0 2 [n2(- + Zb) - 11d

WE OBTAIN
~()= (2n -1)7r b ]2

VUGRAPH 9

We obtain the value of the constant 0(I)(0) by using the power series ex-
pansion in the transmutation equation and evaluating at z=0, this gives

(1) (0) -z )(O,s) (0) (s) ds

We next give aneplicit formula for X(i) in terms of the known expressions
for X(0) , 0(0), ( )(0) and the expansion of the kernel function.

()= [(2n-l) 2 0(l)(0)]

Integrating by parts and making a change of variables we can show that the
result reduces to

(1)_ 2k2 JZb fs()[sin( 2 ) 1 d
Zb 

b

which is the same result given by Titchmarsh in his classical application o'.

perturbation theory.
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TO FIND 0()(z) WE RECALL

(1),, + (k2 _ 'A(0 ) e(1) = (1)i(o) + (A(o) - k2) 0'(0).

APPLYING VARIATIONS OF PARAMETERS,

90)(z) ( 0) (S) + (A (0) - k 2 ) )(O)) ds,

THIS GIVES A SOLUTION
z}cs(2n - 1)7r'z ()

60-(z) =C o(0)(z) + 00)(o) (I1 - zCos 2 z

WHERE THE CONSTANT C1 MUST BE DETERMINED.

VUGRAPH 10

Going back to the ordinary differential equation for 0 and the first

order in E expansion, we must solve an inhomogeneous ordinary differential

equation

9(l), + (k2 - A(0 ))0( 1 ) - A(1 )(0) + (A(0 ) -k2)0(1)()

for 8(l) We solve this by variation of parameters and obtain an explicit

formula for the coefficient of the power series expansion. For general solu-

tions to the homogeneous equation we use

F2 (2n-l) rz a- (2n-l)nzYl = sin(2z and Y2 - Cos z
-jb 

2 Zb y jb 2Zb

The solution is a linear combination of these functions and the particular

solution given by

(1) [zb 0(O)(z-s) (, (1)0(0) (s) + (A(0 )
- k2 )0(1)(0)) ds

P 0 J2 (0)

0 fk - A(

The form of the solution therefore is 0(l) - c 1y 1 + c2y 2 + 0(1) Ti,-

boundary condition at the surface 0(l)(0) 1 ives c2 -0. Because &e trans-

mutation preserves the boundary condition 6( l fl (zb)-O, cl cannot be determine,!

from this boundary condition.

10
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USING THE RELATIONS

0(nz) = 00l)(z) + 00l(0)

AND

(l)(z) = 00(z) + f z K(1)(z,s) 0)(s)ds

WE APPLY L2 NORMALIZATION TO OBTAIN A UNIQUE
SOLUTION (C1 IS DETERMINED)

0~0) (0) (11 - Lcos (2n - 1)- cZb 1 Cos (2n - 1)7rz (0) (z) dz)
n Zb 2 Zb 0 Zb 2 Zb

+(jz K(l)(ZS) 0°(s) ds - z' z Kl)(zs)O()(s) ds 0o)(Z) dz)

VUGRAPH 11

We substitute the function 9(1) into the equation that determines
and use this with the transmutation to determine the first order in f coeffi-
cient of the power series expansion of 0. We ask that this solution of k to
first order in e be L2 normalized. It is this normalization constraint that
allows us to give a unique, explicit formula for the first order coefficient.

dI
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THE TRANSMUTATION RESULT
z - 1)7rz _ 1 (2n - 1)rz (0)

n n  (0 )  C o s 1zC oss O n (Z) d z )

+(z K0)(z, S) 0() (S) d s - Z z K1)(Z,S) O4o)(s) ds~ 0~()(Z) dz) ~

COMPARED TO THE CLASSICAL RESULT

Zb

Ikr~ ~ fo (z 0 s(c) 8e(0)(0) 8e,0 (0) do, 0) (Z).
On Z) 10) (0)8P

VUGRAPH 12

We compare this transmutation result to the classical result ot
Titchmarsh where this coefficient is given only in terms of an infinite
Fourier series.

This points to an important difference between the two approaches. III
practical application both approaches may suffer inaccuracy due to truncation
-f the power series in e; however the transmutation method does not suffer
from any error due to truncation of an infinite Fourier series expansion. The
transmutation term is in fact the evaluation of the infinite sum.

12


